
JOURNAL OF MAGNETIC RESONANCE 126, 221–228 (1997)
ARTICLE NO. MN971165

Optimization of Adiabatic Selective Pulses

Daniel Rosenfeld,* ,† Shimon L. Panfil,‡ and Yuval Zur‡

*School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel; and ‡Elscint MRI Center, P.O. Box 550, Haifa 31004, Israel

Received November 12, 1996; revised March 11, 1997

Adiabatic RF pulses play an important role in spin inversion where G is the adiabatic parameter
due to their robust behavior in presence of inhomogeneous RF
fields. These pulses are characterized by the trajectory swept by
the tip of the Beff vector and the rate of motion upon it. In this G(v0 , t) Å \veff (v0 , t)\

Éug (v0 , t)É
, [2]

paper, a method is described for optimizing adiabatic inversion
pulses to achieve a frequency-selective magnetization inversion
over a given bandwidth in a shorter time and to improve slice and tan uÅDv /v1 . Inversion is obtained when the effective
profile. An efficient adiabatic pulse is used as an initial condition. field moves the longitudinal magnetization Mz from the /z
This pulse allows for flexibility in choosing its parameters; in par-

to the 0z axis over a wide band of Larmor frequencies.ticular, the transition sharpness may be traded off against the
In the frame of reference of the slice center, i.e., for v0inverted bandwidth. The considerations for selecting the parame-

Å vc , we may plot the route traced by the tip of the veffters of the pulse according to the requirements of the design are
vector. This graph of v1( t) vs Dv(vc , t) is called the trajec-discussed. The optimization process then improves the slice profile
tory of the adiabatic pulse. An adiabatic pulse is character-by optimizing the rate of motion along the trajectory of the pulse

while preserving the trajectory itself. The adiabatic behavior of ized by its trajectory and the rate of motion of veff upon
the optimized pulses is fully preserved over a twofold range of it. Three classic examples (expressed here as amplitude/
variation in the RF amplitude which is sufficient for imaging appli- frequency modulation functions) include the sech/tanh (4) ,
cations in commercial high-field MRI machines. Design examples sin/cos (5) , and const / tan (3) . Several methods have been
demonstrate the superiority of the optimized pulses over the con- proposed for the optimization of the modulation functions
ventional sech/tanh pulse. q 1997 Academic Press in adiabatic pulses. Some were derived from the adiabatic

criterion, such as NOM (6) and its derivatives (7–12) ; other
methods employ optimal control theory (13–15) .

Adiabatic fast passage has long been used to invert a In our previous work, Ref. (16) , we presented a new
selected band of spins. These pulses retain their robustness adiabatic inversion pulse for which the designer is able to
even when subjected to nonuniform RF amplitude. The pulse obtain a very efficient pulse when given a required set of
is defined by its instantaneous amplitude v1( t) Å gB1( t) pulse parameters. The trajectory traced by the veff vector
and frequency v( t) and is most conveniently studied in the has a square-like shape with rounded corners and is divided
frequency frame which is a frame of reference rotating at into several sections. The reader is referred to Eqs. [8]
the instantaneous frequency of the pulse (1) . It operates by through [25] and Fig. 3 of that reference for a summary of
causing the magnetization vector m to follow the effective the pulse-modulation functions and the trajectory. The pulse
field vector veff Å gBeff which is composed of the RF field parameters used for the design process include the inverted
v1 and the resonance offset Dv(v0 , t) Å v( t) 0 v0 , v0 bandwidth SW, the peak RF amplitude gB1 max [which is
being the Larmor frequency of the spin we are inspecting. designated in Ref. (16) and below as xf ] , a parameter c0
The adiabatic theorem (2) asserts that the magnetization associated with the transition width, and g

V 0
1 which is related

vector m remains spin-locked to veff provided that the rate to the adiabaticity of the pulse and determines its total dura-
of precession of m about veff is much faster than the angular tion. Note that the first three parameters are defined in units
velocity of the motion of veff . Mathematically this is ex- of angular frequency and the fourth is unitless. The parame-
pressed by the adiabatic condition (3) ter g

V 0 represents the minimal value attained by the adiabatic
parameter G along each segment of the pulse. This can be
demonstrated as follows: take any point along the trajectoryG(v0 , t) @ 1, [1]

1 In this paper, we use gV 0 , a unitless parameter related to g0 in Ref. (16)† To whom correspondence should be addressed. Present address: Elscint
MRI Center, POB 550, Haifa 31004, Israel by g

V 0 Å 2pg0 .
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222 ROSENFELD, PANFIL, AND ZUR

of the pulse, say at time instance t0 , and compute the value which is an estimate of the largest inverted bandwidth that
can be achieved for the given pulse duration T and RFof G(v0 , t0) for this point with respect to all Larmor frequen-

cies v0 in the in-slice and out-of-slice regions (16) where amplitude xf . Note that our choice of c0 Å 0.522xf , to-
gether with the restriction SW/2 § c0 , results in a lowerthe adiabatic condition is required to be fulfilled. The pulse

is designed so that the minimal value obtained is exactly bound of 1.044 for the term in parentheses in the expres-
sion for SW in Eq. [5 ] .g

V 0 . In practice, we found that the minimal value of g
V 0 É 4

The two extreme cases were distinguished by the relativecan still render satisfactory inversion. The parameter c0 is
magnitude of the two terms in Eq. [3]; the conditions arerelated to the transition width: when the minimal value of
such that one is dominant over the other. A range of interme-g

V 0 is selected, the transition width is approximately 2c0 .
diate cases may also be envisaged. For example, in order toThe total pulse duration T is determined by summing up
invert a wide frequency band while maintaining a sharpthe time spent on each segment of the pulse [cf. Ref. (16)]
transition, both terms should be of similar magnitude. Theand then multiplying by 2:
two extreme cases are exemplified below.

In contrast to the pulse we have just described, the conven-
T Å g

V 0

2p F2.18
c0

/ (SW/xf ) 0 0.815
xf

G . [3] tional sech/tanh adiabatic pulse is less flexible in its behav-
ior. The sech/tanh pulse enables us to select the inversion
bandwidth SW and the maximal RF amplitude xf along theThis equation enables us to trade off the various parameters of
trajectory. However, these two parameters determine thethe pulse to meet the design requirements: it can help us deter-
minimal inversion time (4) which is the minimal durationmine the optimal parameters that can be achieved for a given
required by the pulse to invert the magnetization. We cannotpulse duration or, alternatively, the minimal required duration
sacrifice the transition width in order to accomplish inver-for a predetermined set of pulse parameters. Let us demonstrate
sion, as is possible in our pulse, because the transition widththis for two extreme cases: (1) We require a transition which
of the sech/tanh pulse is exclusively determined by its dura-is as narrow as possible, but care less about the inverted band-
tion. These points are emphasized in the examples givenwidth. Such a pulse is useful if we want to invert selectively
below. In the Appendix, the performance of the sech/tanhthe magnetization of lipid spins while leaving the magnetization
pulse is quantitatively compared with that of the new adia-of water spins intact. In this case, most of the time is spent in
batic pulse.the ‘‘transition region’’ of the pulse [section AB in Ref. (16):

Thus far, we have assumed that the value of g
V 0—thethe horizontal section close to the z axis], so that the first term

lowest value of G—is kept constant throughout the entirein [3] is dominant over the second, yielding
pulse. When using a constant g

V 0 , the pulse may exhibit some
imperfections in the form of increased sidelobes in the out-
of-slice region or a ripple within the inverted band (the in-T É g

V 0

2p
r

2.18
c0

c c0 É
g
V 0

2p
r

2.18
T

, [4]
slice region). We now show how to use the pulse as a
starting point for an optimization process which adjusts the

where g
V 0 É 4, which gives us an estimate of the lowest rate of motion along the given trajectory by optimizing g

V 0
achievable transition width. as a function of t . The theoretical background of setting up

(2) At the other extreme from the situation just described, an MRI pulse optimization problem can be found in Refs.
we would like to invert the largest possible bandwidth SW (15, 17) . Optimality is usually measured with respect to a
in a given pulse duration T and RF amplitude xf . To this cost functional which expresses the Euclidean distance be-
end, we are willing to sacrifice the transition width. Here, tween the target magnetization md(v0) and the actual mag-
most of the time will be spent in the vertical sections of the netization m(v0 , T )
trajectory which requires that the first term of Eq. [3] must
be minimal. This occurs when x0 equals x1 [see Ref. (16 , Jd Å ∑

v0

[m(v0 , T ) 0 md(v0)] 2 , [6]
Eq. [15])] , so that Thoriz Å 0 and the resulting transition
width is given by c0 Å 0.522xf . On the other hand, c0 £ SW/
2 since it is impossible for the transition region to exceed the where the sum is performed over a range of Larmor frequen-
inverted bandwidth. Substituting the transition width back cies which includes the region of inversion. In Ref. (17) ,
into Eq. [3] gives we described an optimization method for adiabatic pulses

in which both the amplitude and the frequency-modulation
functions are optimized. The adiabaticity is incorporated intoT Å g

V 0

2p
rF (SW/xf ) / 3.36

xf
G c

the optimization problem by enhancing the cost functional
given in Eq. [6] with an additional, adiabaticity-preserving
term, the purpose of which is to maintain adiabaticity duringSW Å xfrS xf

g
V 0 /2p

T 0 3.36D , [5]
the optimization process. In this paper, in contrast, this addi-
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223OPTIMIZATION OF ADIABATIC SELECTIVE PULSES

tional term is not required. Instead, the sweep rate is the The mathematical programming optimization algorithm
starts off with an initial pulse protrayed by its N samplingfunction that is optimized and, as we discuss below, adiabat-

icity is preserved by: ( i) restricting the motion to the original intervals {Dtn}. The optimization program efficiently
‘‘slides’’ down the N-dimensional surface of the cost func-pulse trajectory and (ii) forcing only forward motion of the

effective field vectorveff . In addition, we benefit by reducing tion until it sufficiently approaches a minimum.
A comment is due concerning the sign of the Dtn vari-both the complexity (i.e., no adiabatic term) and the dimen-

sionality (i.e., only a single function is optimized rather than ables. It is obvious that these variables must be nonnegative.
This is not ensured, however, by the proposed algorithmtwo) of the problem.

We begin by breaking up the RF pulse into N segments which may yield negative Dtn values. The situation is reme-
and representing it by a piecewise-constant function with died by using the substitution Dtn Å b 2

n , yielding the cost
the definition function

v1[n] Å v1( t) , v[n] Å v( t) , J[Dt1 , Dt2 , . . . , DtN] Å J[b 2
1 , b 2

2 , . . . , b 2
N] .

for tn01 õ t £ tn , n Å 1, 2, . . . , N , [7]

The optimization is now performed with respect to the pa-
where tn are the sampling times with t0 Å 0 and tN Å T . The rameters {bn} which guarantees that the final sampling times
sampling intervals are given by are nonnegative.

The procedure is now demonstrated in two examples that
Dtn Å tn 0 tn01 , n Å 1, 2, . . . , N . [8] represent the two extreme cases described above. The experi-

mental setup was described in detail in (16) , and the pulses
We employ a notation where the discrete time index is en- were implemented on a Prestige 2T system (Elscint Ltd.,
closed in square brackets to distinguish it from the continu- Haifa, Israel)
ous time variable which is enclosed in parentheses. Each The objective of our first example is to achieve a sharp
sampling duration Dtn is directly proportional to g

V 0 . Conse- transition which is typically useful when selective inversion
quently, the rate of motion along each segment, which is of fat is required. Whereas the inverted bandwidth is less of
embodied by g

V 0 , may be adjusted by altering the sampling an issue, our main concern is over the width of the transition.
time Dtn . Therefore, the optimal pulse is described by a set The pulse chosen for optimization was a 12 ms pulse which
of N sampling intervals {Dtn , n Å 1, 2, . . . , N}, the sum inverts a bandwidth of SW/2p Å 1 kHz using maximal RF
of which is the pulse duration T Å (N

nÅ1 Dtn . The latter amplitude xf /2p Å gB1 max /2p Å 1 kHz. The transition width
restriction can then be appended to the cost functional of parameter of the original pulse is chosen to be c0 /2p Å 120
Eq. [6] yielding Hz. It is easily seen that the first term in Eq. [3] is much

larger than the second so that our requirement is fulfilled.
Moreover, as we expected, the equation yields a value of

J[Dt1 , Dt2 , . . . , DtN] Å Jd / kr( ∑
N

nÅ1

Dtn 0 T )2 , [9]
g
V 0 Å 4.1. The dashed line in Fig. 1a depicts the computed

response to this pulse. The optimization process is carried
out in order to eliminate the large sidelobes which are clearlywhere k is a positive factor which controls the relative
visible. It was performed over a frequency bandwidth ofweighting of the two terms. k is determined experimentally:
{1.5 kHz which was sampled at K Å 100 points. The transi-the larger the k, the better will the total-time constraint be
tion width of the desired magnetization was set to 2dv /2pobeyed. This, however, will be done at the expense of the
Å 100 Hz. The cost functional weight factor of Eq. [9] wasslice profile quality.
k Å 2. Figure 1 displays the results of the optimization,The desired magnetization md(v0) we use is specified by
whereas Fig. 2 compares the transition of the optimized pulse
with that of an equivalent sech/tanh pulse. The optimized
pulse is seen to have a sharper transition and the sidelobes
have indeed been eliminated.

md(v0) Å

(mx , my , mz) Å (0, 0, 01)

for Év0É ú SW/2 0 dv

(mx , my , mz) Å (0, 0, /1)

for Év0É ú SW/2 / dv

. [10] The adiabatic behavior of the pulse is demonstrated by
studying its sensitivity to inhomogeneity of the RF field.
This is done by plotting contours of the longitudinal magneti-
zation at the end of the pulse at each off-resonance frequency
in the presence of field imperfections. In Fig. 3, these con-This is an ‘‘ideal’’ profile with an unspecified transition

region of width {dv left at the slice boundaries. As a rule tours are plotted as a function of the maximal value of the
applied RF field for the original and optimized pulses. Theof thumb, dv É c0 could be tried as an initial guess with

lower values used to sharpen the transition. region enclosed by the dotted lines in Fig. 3b shows that the
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224 ROSENFELD, PANFIL, AND ZUR

FIG. 1. Optimization of a pulse which is intended to achieve a sharp transition. (a) Slice profile, and pulse shape functions (c) amplitude and (d)
frequency of original pulse (dotted line) and optimized pulse (solid line) . (b) Experimental result (solid line) compared with simulated result (dashed
line) . Parameters of original pulse: duration, 12 ms; (g /2p)B1 max Å 1 kHz; slice width, SW/2p Å 1 kHz. Transition width parameter, c0 /2p Å 120
Hz. gV 0 Å 4.1.

optimized pulse retains a robust adiabatic behavior over a a weak RF amplitude in a short time. This is achieved by
sacrificing the transition width. We are trying to invert a100% variation in RF amplitude.

In our second example, an attempt is made to design a bandwidth of SW/2p Å 9 kHz with an RF amplitude as low
as xf /2p Å gB1 max /2p Å 1 kHz. We attempt to use parame-pulse which is capable of inverting a large bandwidth using
ters that are more extreme than those discussed below Eq.
[3] . In particular, we choose the transition width parameter
c0 /2p Å 300 Hz and the adiabatic parameter g

V 0 Å 2 which
yield a pulse of duration 5 ms. The resulting pulse exhibits
a large ripple within the inverted band and a transition which
levels off slowly (cf. the dashed line in Fig. 4a) . It can be
seen that now the second term in Eq. [3] dominates the
first as required. The optimization was performed over a
frequency bandwidth of {10 kHz which was sampled at K
Å 100 points. The transition width of the desired magnetiza-
tion (Eq. [10]) was 2dv /2p Å 800 Hz. The cost-functional
weight factor was k Å 2. The results are depicted in Fig. 4
which shows that only a small and tolerable ripple remainsFIG. 2. Transition region of the optimized pulse of Fig. 1 (solid line)

compared with that of an equivalent sech/tanh pulse (dotted line) . in the inverted magnetization and the sharpness of the transi-
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225OPTIMIZATION OF ADIABATIC SELECTIVE PULSES

FIG. 3. Stability in the presence of RF field inhomogeneity: contours of the longitudinal magnetization at the end of the pulse at different RF
amplitudes. (a) Original pulse and (b) Optimized pulse (corresponding to the pulse in Fig. 1) .

tion is repaired. A sech/tanh adiabatic pulse with similar In medical imaging applications, especially in high-field
systems, the specific absorption rate (SAR) is an importantparameters is seen not to invert the magnetization (dotted

line) . The optimized pulse can also be shown to retain its specification of an RF pulse. The SAR measures the amount
of RF energy dissipated by the patient’s body per unit time.stability over a 100% variation in RF amplitude.

FIG. 4. Optimization of a pulse which is intended to invert a large bandwidth using a weak RF amplitude in a short time. (a) Slice profile, and
pulse shape functions (c) amplitude and (d) frequency of original pulse (dotted line) and optimized pulse (solid line) . (b) Experimental result (solid
line) compared with simulated result (dashed line) . Parameters of original pulse: duration, 5 ms; (g /2p)B1 max Å 1 kHz; slice width, SW/2p Å 9 kHz.
Transition width parameter, c0 /2p Å 300 Hz. g

V 0 Å 2. The slice profile is compared with a conventional sech/tanh adiabatic pulse with similar parameters
(dashed line) .
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226 ROSENFELD, PANFIL, AND ZUR

The RF energy of an RF pulse of duration T is proportional Optimization using the trajectory constraint is not limited
to the adiabatic pulse used in this paper. The same principleto
was successfully employed with respect to the sech/tanh
adiabatic pulse (22) . In this paper, we chose to demonstrate

Epulse } *
T /2

0T /2

(gB1( t))2dt .
the procedure using our pulse since, to start with, it is more
efficient than the sech/tanh pulse (16) . Optimization meth-
ods which search for a local minimum are sensitive to theThe SAR induced by the pulse depends on the number of
initial conditions used. It is, therefore, desirable to begin thetimes per second that this pulse is employed. Comparing the
process from the best possible pulse.energy of the optimized pulse with that of an equivalent

sech/tanh pulse, both shown in Fig. 2, we obtain
APPENDIX

Eexample 1

Esech/ tanh

Å 0.4. Comparison of the New Adiabatic Pulse
with the sech/tanh Pulse

In this Appendix, we quantitatively compare the perfor-The two pulses have identical peak amplitude. The optimiza-
mance of the conventional sech/tanh pulse with that of thetion has, therefore, achieved a large reduction in SAR level
adiabatic inversion pulse which was described in Ref. (16) .as well as a sharper transition. With regard to the second
The sech/tanh pulse (4, 23) is defined as follows in theexample, the situation is similar to that described in Ref.
frequency frame which rotates at the instantaneous fre-(16) . Comparing the energy of the optimized pulse with the
quency of the pulseparameters shown in Fig. 4 (gB1 max /2p Å 1 kHz) with a

sech/tanh pulse of equal duration (a higher peak RF ampli-
tude gB1 max /2p Å 1.8 kHz must be used to achieve full v1( t) Å xf sech(bt)
inversion), we obtain

v( t) 0 vc Å
SW

2
tanh(bt) ,

Eexample 2

Esech/ tanh

Å 1.2.
where xf is the maximum RF amplitude, SW is the inverted
bandwidth, and vc is the Larmor angular frequency at the

In many practical applications, this slight increase in energy slice center. The pulse duration T is associated with the
is unimportant as was discussed in Refs. (16, 18) . Moreover, parameter
the peak RF amplitude is a critical restriction in practical
MRI systems, and the optimized pulse performs the inver-

b Å 10.6/T [11]
sion using a significantly lower amplitude.

The adiabatic behavior of the outcome of the optimization
so that the argument bt is given by 05.3 £ bt £ 5.3. Theis due to the trajectory constraint which was imposed on
trajectory of this pulse is a half-ellipse (23) . For conve-the optimization process; the effective field vector veff was
nience, we define the parameterconfined to its original trajectory, in addition to which it

was required to advance constantly along this path (i.e.,
backtracking was prohibited) . Eliminating the trajectory

£ Å xf

SW/2
,

constraint could induce abrupt motion of the effective field
vector, thereby obstructing the adiabaticity (17) .

which is the ratio between the two radii of the ellipse. SilverIt is important to reiterate that the flexible performance
et al. (24) solved the Bloch equation analytically for thewhich we demonstrated is made possible by the tradeoff that
sech/tanh pulse. The final magnetization Mz at off-resonanceour original pulse permits between the transition width 2c0

V0 Å v0 0 vc is given byand the inverted frequency band SW; one may be sacrificed
in favor of the other. This was illustrated in the examples
by comparing our results with those of a conventional sech/ Mz(V0)

M0

Å tanh pSV0

2b
/ m

2D tanh pSV0

2b
0 m

2Dtanh adiabatic pulse that does not allow such a tradeoff.
Nevertheless, the optimization process brings about a deteri-
oration in the adiabaticity of the pulse. In both our examples, / cos pm

√
£

2 0 1 sech pSV0

2b
/ m

2Dit was verified that the pulses behave adiabatically over an
approximately twofold range of variation in the RF field.
This range ensures full inversion for coils that are used in 1 sech pSV0

2b
0 m

2D , [12]
high-field whole-body imaging (19–21) .
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227OPTIMIZATION OF ADIABATIC SELECTIVE PULSES

where M0 is the equilibrium magnetization which is assumed From Eq. [17], we can see that epm @ 1 so that we can
approximateto be in the z direction and m is defined by

m Å SW/2
b

. [13] tanh2 pm

2
É 1 0 4

epm

We will calculate (i) the transition width of the sech/tanh sech2 pm

2
É 4

epm
pulse and (ii) the minimal inversion time, Tm , which is the
threshold duration required for the pulse to invert Mz .

1 / cosh pm
√
1 0 £

2 É 1
2

epm

√
10£ 2

.Close to a transition, the first term in Eq. [12] is dominant
over the second, leaving us with

If £ ! 1 so that
√
1 0 £

2 É 1 0 £
2 /2 and requiring anMz(V0)

M0

á tanh pSV0

2b
/ m

2D tanh pSV0

2b
0 m

2D . [14] inversion of Mz(V0) /M0 Å 00.98, Eq. [18] yields

Each transition is then governed by one of the tanh functions Tm É 2.4
SW
x 2

f

, [19]
so that the transition width is given by the frequency band-
width needed for tanh a to switch between {0.95 with a Å

where SW and xf are given now in frequency units. Equationp(V0 / (2b) / m/2) , the argument. Therefore, a Å {1.83.
[19] is obtained by using the definition [13] of m. EquationThe transition width DV0 å 2c0 is then given by
[19] can be compared with the minimum inversion time of
the new adiabatic pulse given in Eq. [5] . Substituting the

p
DV0

2b
Å 2 1 1.83 c T É 2

c0

, [15] minimal value of g
V 0 É 4, we obtain

with c0 given in frequency units (hertz) . For the new adia- Tm É 0.64
SW
x 2

f

/ 2.14
xf

, [20]
batic pulse, Eq. [4] yields

where SW and xf are in frequency units and the transition
T É 1.4

c0

, [16] width is c0 Å 0.522 xf .
For £ õ 1, the new pulse, Eq. [20], performs much better

than the sech/tanh pulse of Eq. [19]. For example, when aby substituting the minimal value of g
V 0 É 4. For a given

bandwidth of SW Å 9 kHz is to be inverted using an RFpulse duration, the transition width of the new adiabatic
amplitude of xf Å 1 kHz, the sech/tanh pulse would requirepulse is sharper by a ratio of 1.4:2, as illustrated by Fig. 2.
21.6 ms compared with 7.9 ms for the new pulse.The time Tm is the minimal pulse duration required to

invert Mz at the Larmor frequency vc of the slice center ( i.e.,
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